Ecosystems, reg. n. CZ.1.07/2.3.00/20.0064 continue to provide an attractive setting for biodiversity studies. In this study, we examine bird species richness, abundance, and distributions and feeding preferences of birds along one of the few complete undisturbed elevational gradients of tropical rainforest of Papua New Guinea.

We tested whether available area, regional species pool, minimum domain effect, contemporary climate, or habitat complexity determine observed species richness. To disentangle the effect of these factors on bird species with different ecologies, we use species richness for five feeding guilds – insectivores (IN), nectar-seekers (NE), frugivores (FR), frug-insectivores (FR-IN) and nectar-seekers (NE) – of birds observed during random walks, mist nets, and visual census surveys.

We also investigated abundance of birds from these feeding guilds and correlated them with food availability. Finally, we were interested whether parasites may also have effect on observed patterns in species richness or abundances.

RESULTS

We observed total of 33,641 bird individuals and 241 bird species. Most of them were recorded during point-counts (PC), mist-netting (MN) and finally some birds were observed solely during random walks (RW). Insectivores were represented by 115, insecto-nectarivores by 16, frugivores by 50, frug-insectivores by 42 and nectarivores by 11 bird species. Seven non-forest birds were excluded from some analyses.

We found strong support for the effect of habitat complexity on insectivorous birds and also on overall species richness. Species richness was also positively related to contemporary climate represented by local temperature and humidity. Surface area available per elevational belt, local and regional species pool were positively correlated with species richness. However, fits of models were relatively poor. Species richness had very low concordance with the mid-domain effect predictions.

METHODS

Data on bird communities were collected at eight sites during three separate surveys encompassing both dry and wet seasons over a two-year period. Birds were recorded using three methods – point counts, mist-netting and random walks throughout a standardized area. Five predictors of diversity were tested, including all sets of their interactions. Habitat complexity (e.g., shrub density, tree height, plant richness) and contemporary climate (local temperature and humidity) were locally measured, area available at elevational belts was obtained using GIS software, regional species pool was determined from literature and mid-domain effect was simulated from empirical ranges. We used emetic tartar to obtain food samples from birds, and we identified more than 5,600 insect individuals from obtained food samples. For all insect, we estimated body length. We counted proportion of fruits vs. insect in each samples and consulted our data with literature. We isolated DNA from blood of all birds, barcoded all blood samples, and sequenced all samples where malaria parasites were confirmed.

ACKNOWLEDGEMENTS: I am in debt to Vojtech Novotny, David Storch, and Carsten Rahbek who suggested the main directions of analyses, and advised throughout the project. I wish to thank to numerous field assistants from Kavi, Rambe, Bunbi, Bruno Sawmill, Moniape, and the team. This project was financially supported by the Czech Science Foundation Grants 14-22044Y, 207/09/0155 and 206/08/H044, Czech Ministry of Education ME09082, Grant Agency of University of South Bohemia 136/2010/P and 156/2013/P, US National Science Foundation DEB-0841885, and was part of Center of Excellence for Global Study of Biodiversity and Function of Forest Ecosystems, n. e. C2.1202/3.80/30.00164 co-financed by the European Social Fund and the Czech Republic.

CONCLUSION

We observed a negative relationship between species richness of birds and elevation. Observed species richness was positively correlated and best fitted with habitat complexity. In agreement with many other studies, we showed that such species richness pattern correlates also with contemporary climatic conditions, and with regional species pool. We suggest that observed richness patterns were shaped by habitat characteristics and biotic interactions.

Insectivorous birds are also likely to be influenced by habitat characteristics indirectly via arthropods living and feeding on the foliage, and representing food resources (K Sam et al., L Sam et al., both in prep.).

Abundance and species richness of Ficus species decreases towards 1200 m asl. (Sam, L, unpublished data), which could correlate with the steep decrease in species richness of frugivorous birds along our gradient.

The highest species turnover for all birds was observed between 1200 and 1700 m asl, which corresponded with high species turnover of Ficus trees, highest abundance of insectivorous birds, and highest prevalence of avian malaria parasites.

\[\text{Slopes of Mt. Wilhelm (4509 m asl.) in the New Guinea Central Range, extending from the lowlands floodplains of the Ramu river (200 m asl., SS' 4^\circ 14'5" - 20' 48'4") to the treeline (3700 m asl., SS' 47^\circ 14'5" O').} \]

The study was completed along a 30 km long transect with eight sites, evenly spaced at 500 m elevational increments.

Left: Typical habitats and canopy openness at each study site.